PhD defence
Mining the kinematics of discs to hunt for planets in formation
- A.F. Izquierdo Cartagena
- Date
- Friday 1 December 2023
- Time
- Address
-
Academy Building
Rapenburg 73
2311 GJ Leiden
Supervisor(s)
- Prof.dr. E.F. van Dishoeck
- Prof.dr. L. Testi (Università Di Bologna)
- dr. S. Facchini (Università Degli Studi Di Milano)
Summary
Detecting planets during their formation stages is crucial for understanding the history and diversity of fully developed planetary systems like our own. However, observing young planets directly is challenging because they are often deeply embedded within their host protoplanetary discs, rich in gas and dust. To overcome this limitation, this thesis introduces a novel methodology for identifying coherent kinematic perturbations in discs induced by giant planets orbiting stars with a mass similar to that of the Sun. This approach not only allows us to investigate the presence of planets but also to determine their most likely radial and azimuthal positions in a statistically robust manner. Moreover, it offers the additional benefit of enabling a three-dimensional reconstruction of the physical and dynamical structure of these planet-forming environments by simultaneously modelling the emission of multiple molecular tracers.
The methodology is applied to various protoplanetary discs observed using the world-class interferometer ALMA, revealing a wide variety of kinematic and temperature features. These features include large-scale substructures with spiral and ring-like morphologies, as well as localised perturbations, some of which span coherently across the vertical extent of the disc indicating meridional circulation of material. Among the eight discs analysed, five exhibit signatures in the outer regions that could potentially be associated with massive embedded planets, suggesting that the interaction between discs and wide-orbit giant planets may represent a common early mechanism with a fundamental role in shaping the evolution of discs and, as a result, in the assembly and composition of planetary systems.
PhD dissertations
Approximately one week after the defence, PhD dissertations by Leiden PhD students are available digitally through the Leiden Repository, that offers free access to these PhD dissertations. Please note that in some cases a dissertation may be under embargo temporarily and access to its full-text version will only be granted later.
Press enquiries (journalists only)
+31 (0)71 527 1521
nieuws@leidenuniv.nl
General information
Beadle's Office
pedel@bb.leidenuniv.nl
+31 71 527 7211